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1 Executive Summary 

 

The purpose of this project is to develop a set of instructions to maintain, repair, and 

improve the operation of a simulated model of the Georgia power system during the outbreak of 

a pandemic. What makes such an outbreak so problematic on a grid is the need to quarantine 

maintenance and repair crews upon infection, which delays when lines get repaired, should they 

fail. The goal here is to develop methods of security to foresee incoming failures for different 

transmission lines based on importance, plan contingencies around these expected failures, and 

develop a schedule to properly allocate maintenance and repair crews based on likelihood of 

infection and how many are already quarantined. The end of each simulation produces a score, 

which is essentially the total cost needed to run the system for that simulation. Naturally, it needs 

to be minimized. After conducting copious amounts of simulations and collecting plentiful data, 

we found that the most cost-effective way to use the model involves using:  

1. A contingency of security where at least one line is expected to fail on each turn.  

2. A repair schedule where the amount of crews sent out to one line is based on the 

percentage of total load that the failed lines shed.  

3. A maintenance schedule that sends out crews based on the likelihood of an infection 

occurring.  

 

 



 

2 Introduction 

 

After the unprecedented arrival of the COVID-19 pandemic this year, now more than 

ever, are we incentivized to create contingencies to mitigate future pandemics and similar crises. 

This is largely due to the fact that state and local governments were required to shut down parts 

of the economy, for a certain portion of time, to prevent the disease from spreading further, 

which lead to major fluctuations in energy demand. This too can adversely affect the degree of 

successful maintenance done for power grids as well. Three focal points of importance, whose 

behaviors would most likely indicate how the disease has affected the nation, are the public 

health sectors, commercial sectors, and social distancing mandates.  

The impact of the shutdowns perpetuated by the pandemic was first made evident in New 

York City when night time lighting decreased by 40% between February and April [1]. 

Beginning around mid-March, a large increase in stay-at-home orders appeared to have caused a 

steep drop in electrical consumption. According to ​Figure 1​, the weekly average of new cases 

dropped significantly after April 14th in New York, but the rate of reduction for electricity 

consumption continued to increase and peaked at 15.6% on June 2nd. Very similar patterns were 

observed in Philadelphia, Kansas City, Los Angeles, Chicago, and Boston. These findings may 

prove a weak sensitivity of electrical consumption to rising case numbers in certain cities [2]. 



 

Figure 1: Factors influencing New York energy production due to COVID-19 [2]. 

 

What appears to have the biggest impact on power grids is the withholding of operation 

in the commercial and retail sectors. For New York, Philadelphia, and Houston, a 1% decrease in 

retail mobility in conjunction with a 1% increase in COVID cases in steady state, caused a 

decrease in electricity consumption by 0.25%, 0.48%, and 0.78% respectively. Despite the easing 



of mandates and a reopening in May, many states still experienced power demand lower than 

that of 2019. Almost every region that was affected by the pandemic experienced a reduction in 

energy demand within the range of 10% to 30% [3]. Although a decrease in demand has helped 

alleviate some harm done to our environment, the pandemic has greatly increased the risks of 

workforce disruptions, supply chain disruptions, and increased risks of breaches in cybersecurity 

due to more teleworking employees [4]. This system model will focus primarily on how to 

mitigate any adverse effects caused by such disruptions and how to efficiently prevent them 

altogether.  

 

3 Pandemic Simulation Model 

 

The Pandemic Simulation Model is a heavily simplified model of the State of Georgia’s 

power transmission system. It features 20 busses, 6 generators, and 30 transmission lines, shown 

in ​Figure 2​, and is modeled using a DC power flow approximation. Throughout the simulation, 

each time cycle is composed of three segments: night, day, and evening, with night having lower 

levels of demand and evenings having the highest. Each bus’s load demands are arbitrarily 

modulated using gaussian random variables ‘opts.Pmu’ and ‘opts.Psigma’, which represent mean 

value and standard deviation respectively. Their maximum load thresholds cannot be surpassed, 

otherwise load must be shed at a certain cost per MWh with these costs being consistent over all 

time periods. Generator cost coefficients are also consistent over different time periods. 

Furthermore, ramp rates and startup/shutdown time requirements are not taken into account.  

 



 

Figure 2 - Georgia Power Grid Pandemic Simulation Model [5] 

 

At each line, an exogenous failure probability is assigned, with this probability increasing 

by a set factor during each new time period. The program randomly determines which lines fail 

based on these probabilities. Lines on the periphery of ones that fail are at risk of overloading 

which in turn causes a cascade of failures. An overloaded line fails with a probability that is 

proportional to the amount of overload, and has a zero chance of failing if the load is at or below 

its threshold. New line flows are also calculated based on the ones that fail.  

To reduce the exogenous failure probability of a line, the user can assign crews to lines 

that have not yet failed to perform maintenance, but only for the next turn. This value however, 

cannot be reduced below a set minimum for this probability. If a line has already failed, a crew 

can be assigned to it in order to facilitate repairs on the next turn. A line is considered to have 

failed if its status is below 1. The higher the value for maintenance effectiveness, the better they 

can increase this value for a single turn, and the faster a line is repaired (status is returned to or 



beyond 1). The more crews assigned to a failed line, the less turns it needs to be repaired. It is 

important to note that a value of likelihood for infecting a crew working on  a line is established 

for the simulation as well. If just one crew is infected, all other crews at that same line are 

quarantined and can no longer be used for the remainder of the simulation. Additionally, because 

this harms a crew member’s quality of life, infected crews have a multiplicative increase on the 

final score of the simulation.  

Two scripts are provided to help solve DC power flow problems and security constrained 

unit commitment problems for each turn. A third script is also provided that enables the user to 

run through all 30 turns of the simulation with a predetermined set of conditions to follow. The 

first solver, ‘rundcpf_with_islands’, computes the power flows at each line using the given load 

and generator outputs. The second script, ‘rundcscuc’ takes in two inputs: a power system dataset 

and a matrix denoting a set of contingencies for a given row. Each row represents a line, and a 

column represents a desired contingency of failure, which is selected with a value of 1. The 

solution then gives generator setpoints and load demands that minimize cost without having to 

violate the constraints selected in the second input of the function. The last script, 

‘benchmark_approach’, takes in a power system model, number of available crews, the current 

turn, and number of the last turn, as inputs. It then provides the generator output, load demand, 

and crew allocation matrix for the current turn [5]. 

 

 

 

 

 



 

4 Experimental Setup 

 
The experiment started by running the simulation through the ‘GUI-Based Interface’ a 

few times to obtain a feel for how the system typically operated under different constraints and 

crew allocations. With a baseline set for the system's operation established, the approach was 

switched over to the ‘Function-Based Interface’ to automate the simulation to run multiple times 

with set parameters unattended. This was required to remove the effect of randomness in the 

power-grid’s loads, line failures and crew quarantine. 

Data collection started by using a provided simulation function, 

‘benchmark_approach.m’, as a baseline to determine the best constraints for the simulation and 

to compare the changes made in the crew allocation again to see if there was improvement. The 

benchmark approach was used to run 150 times for each of three different types of constraints, 

‘N-0’, ‘N-1’, and ‘N-2’ security, inputted into the DC security-constrained unit-commitment 

solver. The results of the simulations, as shown in ​Table 1​, show that ‘N-1’ security had the 

lowest score, while ‘N-0’ was cheaper and ‘N-2’ resulted in simulations reaching a gridlock 

where too many lines failed with no crews left to repair them. Due to the lower score, and 

additional system protection over N-0 constraints, N-1 security was chosen for all simulations 

going forward.  

Table 1: Benchmark Approach - DC SU-UC Constraints 

N-0 Security N-1 Security N-2 Security 

Average Score over 150 
Simulations 

Average Score over 150 
Simulations 

Average Score over 2 
Simulations 

58.8560E+6 35.8293E+6 1.0038E+9 



 

With the DC SU-UC constraints chosen, the next simulation parameter to alter was crew 

assignment. As noted in Section 3, quarantined crews have a multiplicative factor on the overall 

final score, making it paramount to reduce possible crew exposure. The first attempt to remove 

possible infection was to remove all crew maintenance on the system, but keeping the repair 

crew rules from the benchmark approach. Seen in ​Table 2​, the overall score skyrocketed when 

the system was run without maintenance. The lack of maintenance caused lines to constantly fail, 

resulting in more crews being sent out for repairs. The additional crew repairs neglected the 

savings of having less crews out for maintenance while adding on additional load shed to the 

system. Furthermore, this change resulted in having N-1 also experience a rare situation where 

the system was stuck in a total failure without repair crews. It is clear that a different approach to 

crew allocation needed to be taken, as with the current infection rate maintenance would be 

required for a low-cost operation. 

Table 2: Benchmark Approach - No Maintenance Crews 

 

With line maintenance proven to be essential to low-cost operation, this experiment 

required a method to determine how to allocate crews to have less group exposure while 

shedding minimal load. Thus, a line analysis was run to determine how much load a failure of 

each line would shed in each of the 30 turns based on the ‘N-1’ Security Constrained Unit 

Commitment algorithm. Due to the randomness of each run of the simulation, this analysis was 

run five times and had the results averaged for a more accurate representation. The resulting 

N-0 Security N-1 Security N-2 Security 

Average Score over 150 
Simulations 

Average Score over 79 
Simulations 

Average Score over 8 
Simulations 

163.0402E+6  102.5567E+6 818.4898E+6 



matrix, shown in ​Appendix 1​, could be used to determine the ranking of lines to repair in each 

turn based on the amount of load they shed upon failure. This information was added to the 

simulation’s dataset to allow for its use in future functions. 

 

The ranking of each line’s load shedding upon failure can now be used to create a more 

conserative crew repair plan than the benchmark approach. The line analysis is loaded into the 

function and is called when a line fails. Upon line failure, the function determines what 

percentage the line normally sheds upon failure against the total simulation load for that turn. 

This percentage is what determines if one, two or three crews are sent out for the repair, as 

opposed to sending many crews to repair the line as fast as possible. Different percentages were 

determined and tested to find an appropriate balance for the default crew infection rate.  If the 

average load shed was below the first percentage of total load, one crew is sent. If it is between 

the two percentages, two crews, and if it is above the second precenatage three crews are sent as 

it is an important line. ​Table 3​ shows that for the default infection rate of 5%, the best repair 

approach was allocating the crews based on 1% and 5% of the total load. Additionally the scores 

showed that this approach was a better pandemic instruction set than the benchmark approach. 

 

Table 3: Load Shed Repair Approach 

 

 

0.5% - 1% 1% - 5% 5% - 10% 

Average Score over 50 
Simulations 

Average Score over 100 
Simulations 

Average Score over 100 
Simulations 

25.6161E+06 22.0678E+06 25.7942E+06 



While 1% and 5% total load was the most cost-effective for the default infection rate, we 

wanted to see how changing the rate would affect this result. Seen in ​Table 4​, the best 

percentages changed when the infection rate was doubled to 10%. With the higher infection rate 

an even more conserative crew allocation was required, showing that these percentages need to 

be determined for each pandemic. Additionally, the higher an infection rate, the better the 

approach becomes as compared to the benchmark.  

 

Table 4: Load Shed Repair Approach - Double Infection Rate 

 

Lastly, we experimented with creating a reduced maintenance schedule that scales with 

the amount of crews quarantined. The new function kept crews maintaining lines with the 

highest probability of failure but would send out fewer maintenance crews as the total number of 

crews was reduced. This was done to try to both reduce the crew quarantine cost and conserve 

crews for future repairs. The repair plan was set to the [1%, 5%] configuration as it was the most 

effective for normal infection rate to ensure any increase or decrease in score was due to the 

received maintenance crew allocation. 

The results of the maintenance plan are shown in ​Table 5 and Table 6​. For the normal 

crew infection rate, it was shown that the reduced maintenance had an inverse effect on the final 

score. This showed that with a low enough infection rate it is beneficial to have more 

maintenance than shedding loads in possible future line failures. However, when tested for 

Benchmark Approach 1% - 5% 5% - 10% 

Average Score over 50 
Simulations 

Average Score over 100 
Simulations 

Average Score over 100 
Simulations 

130.0997E+06 76.3683E+06 58.7355E+06 



double infection rate the maintenance plan produced a lower score than the [1%, 5%] repair plan 

on it’s own. While the reduced maintenance plan can be beneficial, it requires a higher infection 

rate to come into play than the simulation’s default. 

 

 

Table 5: Load Shed Repair (1% - 5%) & Maintenance Approach 

 

Table 6: Load Shed Repair (1% - 5%) & Maintenance Approach - Double Infection Rate 

 

 

 

 

 

 

 

 

 

 

 

>10 Crew - Send 50% 
>5 Crew - Send 25% 

>10 Crew - Send 25% 
>5 Crew - Send 10% 

>10 Crew - Send 100% 
>7 Crew - Send 50% 
>4 Crew - Send 0% 

Average Score over 100 
Simulations 

Average Score over 50 
Simulations 

Average Score over 100 
Simulations 

29.4068E+06 36.0431E+06 56.5071E+06 

>10 Crew - Send 50% 
>5 Crew - Send 25% 

>10 Crew - Send 25% 
>5 Crew - Send 10% 

>10 Crew - Send 100% 
>7 Crew - Send 50% 
>4 Crew - Send 0% 

Average Score over 50 
Simulations 

Average Score over 50 
Simulations 

Average Score over  50 
Simulations 

94.4059E+06 67.4479E+06 78.2114E+06 



5 Results and Recommendations 

 

Firstly, it was apparent to us that implementing anything except for ‘N-1’ security, was 

less than optimal. Having no security in place at all was certainly a route that we could have 

taken, but it proved to be less cost-efficient as lines would fail with nothing in place to mitigate 

the effects. On the other hand, implementing ‘N-2’ security commonly led to situations where 

the entire system would shut down. This was due to needing more repair crews than we could 

possibly provide, so it was unanimous in fully avoiding using such a method. However this could 

just be due to a weird quirk in the simulation model. Furthermore, we felt that ‘N-0’ security was 

not safe, especially if we planned to play with crew allocation and other parameters in future 

simulations. For this, we recommend using strictly ‘N-1’ security.  

Another pair of parameters we agreed to consistently oversee and utilize were repair and 

maintenance. As stated before, crew quarantine has a multiplicative increase on the final score of 

a simulation, and all crews working on the same line will be quarantined if one is infected.  

This leads to a balancing game of risk of losing multiple crews and speed of a line’s repair. To 

address this the amount of crews sent for each repair was weighted by the amount of average 

load shed that a line’s failure creates in that turn compared to the total load. The optimal range 

we determined was [1%, 5%] when assuming the default infection rate (5%). However, doubling 

the infection rate to 10% optimized a range of [5%, 10%], showing that the percentages of total 

load will need to be determined for each infection rate. 

With repair allocations accounted for, a new maintenance plan was proposed and tested. 

Smaller groups of crews proved to produce a lower score, so it was determined to try and reduce 

the amount of crews performing maintenance each turn. Maintenance crews were allocated to 

lines with the highest probability of failure, and the amount of crews sent out decreased as crews 



were quarantined. For the default infection rate (5%), it was found to be most effective to 

constantly send all available crews to perform maintenance for each turn. However, when the 

infection rate was doubled (10%), the score benefited from reducing maintenance as crews were 

lost. 

In conclusion, we recommend always using ‘N-1’ security as well as a schedule that 

varies the amount of crews delegated to a line repair depending on its average load shed. 

Delivery of maintenance is heavily dependent on the infection rate, with lower rates allowing for 

all remaining crews to perform as needed, and higher rates requiring less crews than available to 

be allocated.  

 

6 Limitations and Future Works 

 

The main limitation of this analysis was the time that the group had to learn and play 

around with the theoretical power grid system. While simulations were run through the GUI to 

get a feel of how the system operates and reacts to conditions, this cannot replace the intuition 

and experience of a power engineer who has worked with the real system for years. Having 

experience with the system for an extended period of time would give better insight to the most 

important lines in a system, what some previous major failures are, and having experience with 

the actual line crews to better allocate them. Additionally this experience would be useful to 

know if part of the simulation was not functioning as the real system would. Seeing a 

discrepancy between how you know the system would act and how the simulation acts would 

allow errors to be ironed out and lead to a more accurate model. 

The second limitation of this approach was the simplicity of the simulation model. As 

described in Section 3, the pandemic simulation only accounts for DC power flow and line 



failures. While the recommendations given in this report should serve as a useful guide, there 

could be unaccounted scenarios that cannot be addressed until the robustness and complexity of 

this system is expanded upon. Some examples are the repair and maintenance guides, as they are 

only accounting for line failures, so there might need to be a more aggressive maintenance and 

repair approach with the possibility of generator and bus failures. 

Future work to do with this project would be to develop an algorithm that can take the 

infection rate of a pandemic and automatically adjust the load shed percentages for repair 

allocation and how many crews to send depending on the remaining amount. The project used a 

method of assuming values and simulating them to find the lowest point. An algorithm would be 

able to pinpoint the exact lowest point and would be able to automatically change the parameters 

if the infection rate was to vary throughout the simulation. We believe that a Riemann Sum 

solver could be added and modified to find the lowest operating point. 

 

7 Conclusion 

 

As shown during the COVID-19 pandemic, the need for a plan of action for operating an 

essential utility during situations of this nature is critical. With the possibility of crews being 

quarantined, a crew allocation plan for maintenance and line repair needs to be calculated based 

on a transmission line’s probability to fail and its importance to the system.  This can prove to be 

a rigorous task, but having these methods in place holds plenty of potential to save expenses and 

maintain livelihood in the event of future pandemics. Fortunately, there is plenty of room for 

improvement with a model like this and others alike, which only entails better system 

preparedness and competence, should similar future events ever occur again.  
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9 Appendix 

 

 
Appendix 1 - Line Failure Analysis, the Green Cells display lines that can fail in that turn without 

shedding any load on average 

 

 

Appendix 2 - We noticed when running no constraints (N-0) that when line 3 failed it took out half of the 

entire system with it. Could have been  a one off thing but we wanted to make note of it as it could be 

significant. 


